8 Grid-Imposed Frequency VSC
System: Control in dg-Frame

8.1 INTRODUCTION

Chapter 5 presented dynamic models for the two-level VSC in af-frame and dg-
frame and briefly discussed its control based on generic block diagrams of Figures
5.5 and 5.7. Chapter 6 introduced the three-level NPC as an extension of the two-
level VSC and established that the dynamic model of the three-level NPC is identical
to that of the two-level VSC, except that the three-level NPC requires a DC-side
voltage equalizing system to maintain DC-side capacitor voltages, each at half the
net DC-side voltage. Thus, Chapter 6 presented a unified model for the three-level
NPC and the two-level VSC (Fig. 6.18 and 6.19). Chapter 7 introduced a class of
VSC systems referred to as grid-imposed frequency VSC systems. On the basis of the
unified model of Chapter 6, Chapter 7 presented af-frame models and controls for
two members of the family of the grid-imposed frequency VSC systems, namely, the
real-/reactive-power controller and the controlled DC-voltage power port.In parallel
with Chapter 7, this chapter presents dg-frame models and controls for the real-
/reactive-power controller and the controlled DC-voltage power port.

As discussed in Chapter 7, compared to the abc-frame control, the of-frame
control of a grid-imposed frequency VSC system reduces the number of plants to
be controlled from three to two. Moreover, instantaneous decoupled control of the
real and reactive power, exchanged between the VSC system and the AC system,
is possible in af-frame. However, the control variables, that is, feedback signals,
feed-forward signals, and control signals are sinusoidal functions of time. It is shown
in this chapter that the dg-frame control of a grid-imposed VSC system features
all merits of the oB-frame control, in addition to the advantage that the control
variables are DC quantities in the steady state. This feature it remarkably facilitates
the compensator design, especially in variable-frequency scenarios.

To achieve zero steady-state error in the ofS-frame control, the bandwidth of the
closed-loop system must be adequately larger than the AC system frequency; alter-
natively, the compensators can include complex-conjugate pairs of poles at the AC
system frequency and other frequencies of interest, to increase the loop gain. In the
dg-frame control, however, zero steady-state error is readily achieved by including

Voltage-Sourced Converters in Power Systems, by Amirnaser Yazdani and Reza Iravani
Copyright © 2010 John Wiley & Sons, Inc.

204



STRUCTURE OF GRID-IMPOSED FREQUENCY VSC SYSTEM 205

integral terms in the compensators since the control variables are DC quantities [77].
The dg-frame representation and control of a grid-imposed VSC system is also con-
sistent with the approach used for the dynamic analysis of the large power system. The
small-signal dynamics of the power system is conventionally modeled and analyzed
in dg-frame [42].

Compared to the af-frame control, the dg-frame control requires a synchroniza-
tion mechanism that is usually achieved through the phase-locked loop (PLL); this
requirement can be regarded a demerit of the dg-frame control.

8.2 STRUCTURE OF GRID-IMPOSED FREQUENCY VSC SYSTEM

Figure 8.1 shows a schematic diagram of a grid-imposed frequency VSC system. The
VSC represents either a three-level NPC with a DC-side voltage equalizing scheme
or a two-level VSC. In either case, the VSC is modeled by a lossless power processor
including an equivalent DC-bus capacitor, a current source representing the VSC
switching power loss, and series on-state resistances at the AC side representing the
VSC conduction power loss, as Figure 8.1 shows. The DC side of the VSC may be
interfaced with a DC voltage source or a DC power source. Each phase of the VSC
is interfaced with the AC system via a series RL branch.

In this chapter, as an approximation we consider an infinitely stiff AC system.
Thus, the AC system is modeled by an ideal three-phase voltage source, Veabe-! Tt is
also assumed that V. is balanced, sinusoidal, and of a relatively constant frequency.
The VSC system of Figure 8.1 exchanges the real- and reactive-power components
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FIGURE 8.1 Schematic diagram of a grid-imposed frequency VSC system.

!In Chapter 11, we investigate the dynamics of a VSC system under nonstiff AC system conditions.
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Py(¢) and Q(¢) with the AC system, at the point of common coupling (PCC). De-
pending on the control strategy, the VSC system of Figure 8.1 is used as either a real-/
reactive-power controller or a controlled DC-voltage power port. In Chapter 12, we
employ the real-/reactive-power controller as part of a back-to-back HVDC converter
system. The controlled DC-voltage power port is employed as part of the static com-
pensator (STATCOM), the back-to-back HVDC converter system, and variable-speed
wind-power units, in Chapters 11, 12, and 13, respectively.

8.3 REAL-/REACTIVE-POWER CONTROLLER

The grid-imposed frequency VSC system of Figure 8.1 can be employed as a real-/
reactive-power controller. As such, the VSC DC side is connected in parallel with
a DC voltage source and the objective is to control the instantaneous real and reac-
tive power that the VSC system exchanges with the AC system, that is, Py(¢) and

Qy(0).

8.3.1 Current-Mode Versus Voltage-Mode Control

Two main methods exist for controlling Ps and Q; in the VSC system of Figure 8.1.
The first approach that is known as voltage-mode control and illustrated in Figure 8.2
has been dominantly utilized in high-voltage/-power applications such as in FACTS
controllers [44, 45], although its industrial applications have also been reported [47].
Figure 8.2 illustrates that in a voltage-controlled VSC system, the real and reactive
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FIGURE 8.2 Schematic diagram of a voltage-controlled real-/reactive-power controller.
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power are controlled, respectively, by the phase angle and the amplitude of the VSC
AC-side terminal voltage relative to the PCC voltage [46]. If the amplitude and phase
angle of Vi are close to those of Ve, the real and reactive power are almost
decoupled and two independent compensators can be employed for their control
(Fig. 8.2). The voltage-mode control is simple and has a low number of control loops.
However, the main shortcoming of the voltage-mode control is that there is no control
loop closed on the VSC line current. Consequently, the VSC is not protected against
overcurrents, and the current may undergo large excursions if the power commands
are rapidly changed or faults take place in the AC system.

The second approach to the control of the real and reactive power in the VSC system
of Figure 8.1 is referred to as the current-mode control. In this approach, the VSC
line current is tightly regulated by a dedicated current-control scheme, through the
VSC AC-side terminal voltage. Then, the real and reactive power are controlled by the
phase angle and the amplitude of the VSC line current with respect to the PCC voltage.
Thus, due to the current regulation scheme, the VSC is protected against overcurrent
conditions. Other advantages of the current-mode control include robustness against
variations in parameters of the VSC system and the AC system, superior dynamic
performance, and higher control precision [68]. We demonstrated the basics of the
current-mode control strategy in Chapter 3 and will exclusively focus on this method
throughout the rest of the book.

Figure 8.3 shows a schematic diagram of a current-controlled real-/reactive-power
controller, illustrating that the control is performed in dg-frame. Thus, Py and Qg are
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FIGURE 8.3 Schematic diagram of a current-controlled real-/reactive-power controller in
dg-frame.
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controlled by the line current components ig and i,. The feedback and feed-forward
signals are first transformed to the dg-frame and then processed by compensators to
produce the control signals in dg-frame. Finally, the control signals are transformed
to the abc-frame and fed to the VSC (Fig. 8.3). To protect the VSC, the reference
commands igres and iyer are limited by the corresponding saturation blocks (not
shown in the figure). It is noted that the block diagram of Figure 8.3 is a special
case of the general block diagram of Figure 4.27. In Chapter 12, we employ the
real-/reactive-power controller as part of the back-to-back HVDC converter system.

8.3.2 Representation of Space Phasors in dg-Frame

In this chapter, we need to express space phasors in dg-frame. The transformation
and its inverse were extensively discussed in Chapter 4. However, they are briefly
reviewed in this section, for esz of reference.

Consider the space phasor f (1) = fy + jfg. The dg- to af-frame transformation
is defined as

fat ify = 0?0 = (f, + jfpe i, @.1)

which is a phase shift in ?(t) by —p(¢#). The angle p(¢) can be chosen arbitrarily.

— ~ .
However, if, for example, f () = fel@+00)  then choosing p(¢) to be equal to wt
results in the space phasor

fa+ify = ’]Zej(wt+90) et — ?eﬁo’
—_—

—
;o

which is no longer time-varying and, therefore, f; and f, are DC quantities. The
inverse transformation is

T = fut ifs = fu+ jfype®. (8.2)

8.3.3 Dynamic Model of Real-/Reactive-Power Controller
Assume that the AC system voltage in the VSC system of Figure 8.3 is expressed as
Via(t) = ‘75 cos (wot + 6p) ,

O 2
V(1) = Vi cos | wot + 0y — =)

~ 47
Vie(t) = Vg cos (wot + 6 — ?) , (8.3)
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where \A/S is the peak value of the line-to-neutral voltage, wg is the AC system (source)
frequency, and 6y is the source initial phase angle. Based on (4.2), the space-phasor
equivalent of V_gpc is

Vi(t) = Vyel@or+00), (8.4)

Dynamics of the AC side of the VSC system of Figure 8.3 are described by the
following space-phasor equation (refer to (7.11) for details):

d7 S5 > -
L= ~(Retron) i + V=V (8.5)

Substituting for Vi from (8.4) in (8.5), we deduce

—
di o
Ld—; = —(R+4ron) T 4V, — Velwor+00), (8.6)

Then, we use (8.2) to express (8.6) in a dg-frame. Thus, substituting for _1> = idqejp
and V: = Vyage’* in (8.6), we deduce

d . A A .
LE (i4ge”) = —(R + ron) (iage”) + (Vigge™) — Vil @00 (8.7)
where f4; = fa + jfy. Equation (8.7) can be rewritten as

d . L dp . . 5 _
L (idg) = —J (LE> idg — (R + Ton)idg + Vigg — Vs @00 (8.8)

Decomposing (8.8) into real and imaginary components, we deduce

dig dp\ . . S

LE = LE lg — (R + Vg,l)ld + th - VS COS (a)()[ + 90 - ,0) , (89)
di d ~ .

Ld_: =— (Ld_i)) ig — (R+7on)ig+ Vig — Vysin(wot + 6y — p). (8.10)
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Equations (8.9) and (8.10) are not in the standard state-space form. Thus, we introduce
the new control variable w to (8.9) and (8.10), where w = dp/dt. This yields

dig

L= = LoW®ig = (R + ron)ia + Via = Vs cos(wot + 60 — p),  (8.11)
diy . . S
o —Lw()ig — (R+ron)ig + Vig — Vssin(wot +0p — p),  (8.12)
dp
= = o). 8.13
7 w(t) (8.13)

In (8.11)—(8.13), i4, iy, and p are the state variables, and Vi, Vy4, and w are the control
inputs. The system described by (8.11)—(8.13) is nonlinear due to the presence of the
terms wig, wigy, cos(wot + Gy — p), and sin(wot + Gy — p).

To further investigate (8.11)—(8.13), assume that p has a zero initial condition and
w(t) = 0. Consequently, p remains zero at all times, and (8.11) and (8.12) assume the
forms

dig

L—5 = =R+ ron)ia + Via = V cos(wot + 6p), (8.14)
dig , S
LE = —(R + ron)ig + Vig — Vs sin(wot + 0p). (8.15)

Equations (8.14) and (8.15) describe two, decoupled, first-order systems that are
excited by inputs —V; cos(wpt + 6p) and —’\73 sin(wot + 0p), respectively. Thus, the
superposition principle requires that iy and i, also include sinusoidal components,
irrespective of V4 and Vy,. This result is expected since if p = 0, then based on (8.1)
the dg-frame is the same as the o-frame in which the signals are sinusoidal functions
of time. In other words, (8.14) and (8.15) represent the VSC system in of-frame;
comparison of (8.14) and (8.15), respectively, with (7.12) and (7.13) confirms this
conclusion.

The foregoing discussion shows that the usefulness of the dg-frame depends on
proper selection of w and p. For the VSC system of Figure 8.3, if o = wg and p(¢) =
wot + 6y, then (8.11) and (8.12) take the forms

dig

L—= = Looig = (R+ ronlia + Via = Vi, (8.16)
diy , ,
E = —La)old — (R + r,,,,)lq + qu, (817)

which describe a second-order linear system that is excited by the constant input V.
Thus, if V;4 and V;, are DC variables, i; and i, are also DC variables in the steady state.
The mechanism to ensure p(f) = wot + 6y is referred to as the PLL. The following
section presents the structure, model, and stabilization of the PLL.
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8.3.4 Phase-Locked Loop (PLL)

Substituting for V:(t) from (8.4) in (8.1), we deduce

Vea = Vi cos(wot + 6o — p), (8.18)
Vg = Vysin(wot + 6 — p). (8.19)

Thus, (8.11)—(8.13) can be rewritten as

di
Ld—;l = Lo(t)ig — (R + ron)ia + Via = Vsa. (8.20)
diy . .
E =—Lw()ig— (R+ rr)n)lq + th - qu’ (8.21)
dp
P _ ). 8.22
a =P (622

Based on (8.19), p(t) = wot + 6 corresponds to Vi, = 0. Therefore, we devise a
mechanism to regulate V, at zero. This can be achieved based on the following
feedback law:

w(t) = H(p)Vsq(1), (8.23)

where H(p) is a linear transfer function (compensator) and p = d(-)/dt is a differ-
entiation operator. Substituting for Vg, from (8.19) in (8.23), and substituting for w
from (8.23) in (8.22), we deduce

d, ~ .
d_f; — H(p)V, sin(wot + 6y — p). (8.24)

Equation (8.24) describes a nonlinear dynamic system, which is referred to as PLL
[49], [78-80]. The function of the PLL is to regulate p at wot + 6y. However,
in view of its nonlinear characteristic, the PLL can exhibit unsatisfactory behav-
ior under certain conditions. For example, if the PLL starts from an initial condition
corresponding to p(0) = 0 and w(0) = 0, then the term \A/SH (p) sin(wot 4+ Gy — p) in
(8.24) is a sinusoidal function of time with frequency wq. Then, if H(s) has a low-
pass frequency response, the right-hand side of (8.24) and also dp/dt exhibit small
sinusoidal perturbations about zero, the PLL falls in a limit cycle, and p does not
track wot + 6p. To prevent the limit cycle from taking place, the control law can be
modified as

o(t) = H(p)Vsq(?), @(0) =wy and opin < © < Opax, (8.25)
where w(?) has the initial value w(0) = @ and is limited to the lower and upper limits

of, respectively, @y, and wygx. Omin and wp,, are selected to be close to wp and
thus to define a narrow range of variations for w(¢). On the other hand, the range of
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FIGURE 8.4 Control block diagram of the PLL.

variations should be selected adequately wide to permit excursions of w(t) during
transients. If the PLL tracks wqt + 6p, the term wot + 69 — p is close to zero and
sin(wot 4+ 6y — p) = (wpt + 6y — p). Therefore, (8.24) can be simplified to

d, ~
d—‘t’ = VH(p)wot + 6o — p). (8.26)

Equation (8.26) represents a classical feedback control loop in which wgt + 6y is the
reference input, p is the output, and XA/SH (s) is the transfer function of the effective
compensator, as shown in the block diagram of Figure 8.4.

Figure 8.5 illustrates a schematic diagram of the PLL based on (8.19), (8.22), and
(8.23). Figure 8.5 shows that the PLL transforms Vupc to Vg, (based on (4.73)) and
adjusts the rotational speed of the dg-frame, that is, w, such that Vy, is forced to zero
in the steady state. The end result is that p = wgpt + 6y and Vyg = \A/S. It should be
pointed out that in the block diagram of Figure 8.5, the integrator of (8.22) is realized
by means of a voltage-controlled oscillator (VCO). The VCO can be regarded as a
resettable integrator whose output, p, is reset to zero whenever it reaches 2.

Equation (4.73)

Vsa e

abc >V,
Vb —>
Ve —P dq > VS(J'
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i Compensator
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P j - w%: H(s) =

FIGURE 8.5 Schematic diagram of the PLL.
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8.3.5 Compensator Design for PLL

Dynamic performance of the PLL is highly influenced by the compensator H(s).
Consider the block diagram of Figure 8.4 indicating that the reference signal, wot + 6y,
is composed of a constant component, that is, 6p, and a ramp function, that is, wgt.
Since the loop gain includes an integral term, p tracks the constant component of the
reference signal with zero steady-state error. However, to ensure a zero steady-state
error for the ramp component, the loop gain must include at least two integrators.
Therefore, H(s) must include at least one integral term, that is, one pole at s = 0. The
other poles and zeros of H(s) are determined mainly on the basis of the closed-loop
bandwidth of the PLL and stability indices such as phase margin and gain margin.

Another consideration in designing H(s) is the issue of unbalanced and/or har-
monically distorted three-phase voltages. Assume that V. represents an unbalanced
voltage with a negative-sequence fundamental component and a fifth-order harmonic
component [81], as

Via(t) = Vs cos (wot 4 60) + ki Vs cos (ot + 6o)
+ks Vy cos (Swot + ¢s) ,

N 2 ~ 4
Vip(t) = Vi cos | wot + 6y — 3 + k1 Vg cos | wot + 6y — 3

~ 4
+ks Vg cos | Swot + ¢p5 — 3 )

~ 4 ~ 2
Vie(t) = Vicos | wot + 6y — 3 + k1 Vg cos | wot + 6y — 3

~ 2
~+ks5V; cos <5a)ot + ¢5 — g) ,  (8.27)

where k1 and ks are the amplitudes of the negative-sequence (fundamental) and fifth-
order harmonic components, respectively, relative to the amplitude of the positive-
sequence (fundamental) component. Based on (4.2), the space phasor corresponding
to Viabe 1S

— ~

V, = Y6,](wof+9o) + kli}ve—j(woﬂr@o) + ks f/ye—j(5wol+¢5). (8.28)

If the PLL of Figure 8.5 is under a steady-state operating condition, that is, p =
wot + 6, then based on (8.1) Vg and Vi, are

Via = Vs + k1 Vs cos Quot + 260) + ks Vs cos (6wt + 0y + @), (8.29)
Vsg = —ki Vy sin Qaot 4 260) — ks Vi sin (6wt + 8o + s). (8.30)

Equations (8.29) and (8.30) indicate that, in addition to DC components, Vs; and
Vyq include sinusoidal components with frequencies 2wp and 6wg. Typical values
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of ki and ks are assumed to be 0.01 and 0.025, respectively [81]. However, under
single-phase to ground faults, k1 can be as large as 0.5. The sinusoidal components
of Vi, must be attenuated by H(s). Otherwise, @ and p also exhibit fluctuations that
are modulated with feedback and control signals, through abc- to dg-frame and dg-
to abc-frame transformations, and result in generation of undesirable voltage/current
distortions in the VSC system.

Between the two AC components of V,, the component with frequency 2wy is
more important. The reason is that (i) the frequency of this component is three times
lower than that of the other component and (ii) the magnitude of this component, k1,
can be significantly larger than that of the other component, for example, during a fault.
One approach to attenuate the double-frequency component of Vj, is to ensure that
H(s) exhibits a strong low-pass characteristic. However, this method may compromise
the PLL closed-loop bandwidth. Alternatively, one can include in H(s) one pair of
complex-conjugate zeros, at s = =+ j2wy, to eliminate the double-frequency ripple of
Vyq- The advantage of this technique is that the PLL closed-loop bandwidth is not
sacrificed and can be selected to be arbitrarily large. Example 8.1 illustrates the second
PLL design approach.

EXAMPLE 8.1 Compensator Design for the PLL

Consider the PLL of Figure 8.5 whose input is V. defined by (8.27), where
wo = 27 x 60 rad/s and \A/S = 391 V. The objective is to design the PLL com-
pensator H(s).

As explained in Section 8.3.5, H(s) must include one pole at s = 0 and the
complex-conjugate zeros s = =+ j2wq. In addition, to ensure that the loop gain
magnitude continues to drop with the slope of —40 dB/dec for w > 2wy, a
double real pole at s = —2wy is included in H(s). Thus,

[ h 52 + (2wo)?

where XA/M is the nominal value of I7s and F(s) is the proper transfer function
with no zero at s = 0. Based on the block diagram of Figure 8.4, the loop gain
is formulated as

s2+ (260())2

= s T 200

F(s). (8.32)

Let us assume that we need a gain crossover frequency of w. = 200 rad/s and a
phase margin of 60°. If 4 F(s) = 1, it can be calculated that £¢(j200) = —210°.
Thus, to achieve the required phase margin, F(j200) must add 90° to ££(j200).
As discussed in Example 3.6, a lead compensator can offer an optimum phase
advance to the loop gain. In this example, the required phase advance is fairly
large. Consequently, F(s) can be composed of two cascaded lead compensators,
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each to provide 45° at 200 rad/s. Thus,

F(s) = <s+(p/0t)> <s+(p/a))’ 833)
s+ p s+p
where
p = oo (3.34)
1+ siné,,
= m, (8.35)

and &, is the phase of each lead compensator at w.. If §,, = 45°, based on
(8.33)—(8.35), we calculate F(s) as

2
F(s) = ( s +83 ) . (8.36)
S

Substituting for F(s) from (8.36) in (8.32), we deduce

h (s* +568,516) (s* + 1665 + 6889)
52 (s2 + 15085 + 568,516) (s2 + 964s + 232,324)

£(s) = (8.37)

Itthen follows from [€(j200)| = 1 and Vm =391 Vthath =2.68 x 10°. There-
fore, h/ Vg, = 685.42 and the final compensator is

685.42 (s> 4 568,516) (s* + 1665 + 6889)
s (s2 4 1508s + 568,516) (s2 + 964s + 232,324)

H(s) = [(rad/s)/V].

(8.38)

Figure 8.6 depicts the frequency response of £( jw) based on the compensator
of (8.38). It is observed that |[£(jw)| drops with the slope of —40 dB/dec, for
o K o, = 200. However, around w, the slope of |£(jw)| reduces to about —20
dB/dec and Z{(jw) rises to about —120° at w = w,, corresponding to a phase
margin of 60°. Figure 8.6 also illustrates that |[£(jw)| continues to drop with
a slope of —40 dB/dec for w > w.. This characteristic is desired as the AC
components of Vs, due to the harmonic distortion of Vs are attenuated. In
particular, at ® = 6wy, |¢(jw)| is about —30 dB.

Figure 8.7 illustrates the start-up transient of the PLL. Figure 8.7 shows that,
from ¢t = 0 to t = 0.07 s, the compensator output is saturated at wy,i, = 27 X
55 rad/s and, therefore, Vyy and Vi, vary with time. At about 1 = 0.07 s, Vj,
crosses zero and intends to become negative. Thus, H(s) increases w to regulate
Viq at zero. Figure 8.7 indicates that Vi, is regulated at zero within 0.15 s. It
should be noted that if w,,;, is selected closer to wy, the start-up transient period
becomes shorter. However, w;,i,; cannot be selected too close to wq since the
PLL would not be able to quickly react to other types of disturbance.
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FIGURE 8.6 Open-loop frequency response of the PLL of Example 8.1.

Figure 8.8 illustrates the dynamic response of the PLL to a sudden imbalance
in Vygpe. Initially, the PLL is in a steady state. At = 0.05 s, the AC system
voltage Vjup. becomes unbalanced such that \A/S and k; undergo step changes,
respectively, from 391 to 260 V and from zero to 0.5, and at = 0.15 s, Vigpe

6.28 F T T R I R R T =
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0 0.05 0.1 0.15 0.2

time (s)

FIGURE 8.7 Start-up response of the PLL of Example 8.1.
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FIGURE 8.8 Response of the PLL of Example 8.1 to a sudden AC system voltage imbalance.

reverts to its balanced predisturbance condition. In response to the voltage
imbalance, H(s) transiently changes w, as Figure 8.8 shows, to maintain the
DC component of Vi, at zero. Figure 8.8 also shows that V, (and V) includes a
120-Hz sinusoidal ripple due to the negative-sequence component of V.. The
ripple is, however, suppressed by H(s), and w and p remain free of distortion.

Figure 8.9 depicts the dynamic response of the PLL to two stepwise changes
in wy, the first one from 2w x 60 =377 rad/sto2x x 63 =396rad/satt = 0.05
s, and the other from 396 rad/s to 2 x 57 = 358 rad/s at t = 0.1 s. As Figure
8.9 shows, V, is rapidly regulated at zero and w tracks the changes.

Equation (8.31) denotes that H(s) is normalized such that the constant gain
of the loop gain % is independent of \A/m Thus, in subsequent chapters when we
need a PLL, we will employ the compensator of (8.38), but modify its constant
gain, thatis, i/ Vsn, according to Vs,, for the specific problem in hand, based on
h=2.68 x 10°.

8.4 CURRENT-MODE CONTROL OF REAL-/REACTIVE-POWER
CONTROLLER

With reference to the real-/reactive-power controller of Figure 8.3, based on
(4.83) and (4.84), the real and reactive power delivered to the AC system at
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FIGURE 8.9 Response of the PLL of Example 8.1 to a sudden AC system frequency change.
the PCC are

Py(1) = = [Vaa®)ia(t) + Vsg(Dig(0)] , (8.39)

05(1) = = [=Vsa(0ig(t) + Vg(Dia(n)] , (8.40)

IR N W

where Viq and Vg, are the AC system dg-frame voltage components and cannot be
controlled by the VSC system. As described in Section 8.3.4, if the PLL is in a steady
state, Vs, = 0 and (8.39) and (8.40) can be rewritten as

3
Pi(t) = 3 sd(D)ia(t), (8.41)
3
Os(1) = 5 sd(1)ig(1). (8.42)

Therefore, based on (8.41) and (8.42), Py(s) and Q(s) can be controlled by iy and i,
respectively. Let us introduce
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2
idref([) = %P.vref(t)’ (8.43)
2
iqref(t) = _%eref(l‘)- (8.44)

Then, if the control system can provide fast reference tracking, that is, iy & igref
and iy ~ igref, then Py~ Pg.r and Qg &~ Qger, that is, Py() and Qy(t), can be
independently controlled by their respective reference commands. Since V4 is a DC
variable (in the steady state), igrer and iy are also DC variables if Py and Qger
are constant signals. Thus, as expected, the control system in dg-frame deals with DC
variables, unlike the control system in af-frame that deals with sinusoidal signals.

8.4.1 VSC Current Control

The dg-frame control of the real-/reactive-power controller of Figure 8.3 is based on
(8.11) and (8.12). Assuming a steady-state operating condition and substituting for
w(t) = wp in (8.11) and (8.12), we deduce

di

Ld—td = Lawig — (R + ron)ia + Via = Vsa, (8.45)
di, , .
Z = —Lwoig — (R+ ron)lq + th - Vsqv (8.46)

in which, based on (5.22) and (5.23), V;4 and V,, are

V

Via(t) = %mdm, (8.47)
Vbc

Vig(t) = =5 mq(1). (8.48)

Equations (8.47) and (8.48) represent the VSC model in dg-frame. The model is
applicable to both the two-level VSC and the three-level NPC. In (8.45) and (8.46),
iq and i, are state variables, V;y and Vi, are control inputs, and Vi, and V, are
disturbance inputs. Due to the presence of Lwy terms in (8.45) and (8.46), dynamics
of iy and i, are coupled. To decouple the dynamics, we determine my and m, as

2
mg = —— (ud — Layiy + Vsd), (8.49)
Vbe
2 .
mg = —— (ug + Lwoia + Vi), (8.50)
Vbe

where uy and u, are two new control inputs [69, 82]. Substituting for m, and m in
(8.47) and (8.48), respectively, from (8.49) and (8.50), and substituting for V;; and



220 GRID-IMPOSED FREQUENCY VSC SYSTEM: CONTROL IN dg-FRAME

Feed-forward
filter
dg-frame current controller Vsa
= S empensaor [———=—{Gr ) 3
| r____B___i____.‘! AC-side dynamics
—1 h VSC N — 1
i LA 1% Ud o Md e Vid! _ 1 | ;
dref — ka () AT AC B Ls+Rerg) | T, W
| o |
| Vpey | ! |
= i :
: e :
i o |
i mli I xl |th : 1 I .
| CT I — | Ls+Rtrpp)| lq
| W L S
Feed-forward \%
filter 4
FIGURE 8.10 Control block diagram of a current-controlled VSC system.
Viq from the resultant in (8.45) and (8.46), we deduce
dig )
o —(R+ ron)iq + uq, (8.51)
di, .
LE = —(R+71on)iyg +uy. (8.52)

Equations (8.51) and (8.52) describe two decoupled, first-order, linear systems. Based
on(8.51) and (8.52), iy and i, can be controlled by u4 and u,, respectively. Figure 8.10
shows a block representation of the d- and g-axis current controllers of the VSC system
in which u4 and u, are the outputs of two corresponding compensators. The d-axis
compensator processes g = igref — iq and provides u,. Then, based on (8.49), ug
contributes to mg. Similarly, the g-axis compensator processes e = igref — ig and
provides u,, that, based on (8.50), contributes to m,. The VSC then amplifies m, and
mgy by a factor of Vpc/2 and generates Vy; and Vy, that, in turn, control iy and i,
based on (8.45) and (8.46). On the basis of the above-mentioned control process, one
can sketch the simplified control block diagram of Figure 8.11, which is equivalent
to the control system of Figure 8.10. It should be noted that in the control system of
Figure 8.10, all the control, feed-forward, and feedback signals are DC quantities in
the steady state.

Figure 8.11 indicates that the control plants in both d- and g-axis current-control
loops are identical. Therefore, the corresponding compensators can also be identical.
Consider the d-axis control loop. Unlike the o8-frame control where the compensators
are fairly difficult to optimize and typically are of high dynamic orders, k;(s) can be
a simple proportional-integral (PI) compensator to enable tracking of a DC reference



CURRENT-MODE CONTROL OF REAL-/REACTIVE-POWER CONTROLLER 221

d-axis closed-loop current controller

| e |
1 d Uq 1 .
l k(s > .y
dref | d(s) Ls+(R+7,) | d

| |

e e e e e e e |

g-axis closed-loop current controller

T :

. | e u
q q 1 .

l . L,
qref I kg (5) | Ls+R+7yp) | lq

| |

e e e e o e e e |

FIGURES8.11 Simplified block diagram of the current-controlled VSC system of Figure 8.10.

command. Let

kps + ki
ka(s) = ”s: i (8.53)

where k, and k; are proportional and integral gains, respectively. Thus, the loop gain
is

£(s) = (k_P) M. (8.54)
Ls/) s+ (R+ron)/L

It is noted that due to the plant pole at s = —(R + ry,)/L, which is fairly close to the
origin, the magnitude and the phase of the loop gain start to drop from a relatively low
frequency. Thus, the plant pole is first canceled by the compensator zero s = —k;/ kp,
and the loop gain assumes the form £(s) = k,/(Ls). Then, the closed-loop transfer
function, that is, £(s)/(1 + £(s)), becomes

1,(s) 1
— =Gi(s) = ——, 8.55
]a'ref(s) i) Tis+ 1 ( )
if
kp = L/Tia (856)
ki=(R+ron)/7i. (8.57)

where t; is the time constant of the resultant closed-loop system.
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Equation (8.55) indicates that, if k, and k; are selected based on (8.56) and (8.57),
the response of i4(?) to igre(¢) is based on a first-order transfer function whose time
constant 7; is a design choice. t; should be made small for a fast current-control
response but adequately large such that 1/7;, that is, the bandwidth of the closed-loop
control system, is considerably smaller, for example, 10 times, than the switching
frequency of the VSC (expressed inrad/s). Depending on the requirements of a specific
application and the converter switching frequency, 7; is typically selected in the range
of 0.5-5 ms. The same compensator as ky(s) can also be adopted for the g-axis
compensator kq(s). Example 8.2 demonstrates the design procedures.

EXAMPLE 8.2 Dynamic Performance of Real-/Reactive-Power
Controller

Consider the real-/reactive-power controller of Figure 8.3 with parameters L =
100 pH, R = 0.75 m<2, rop = 0.88 m2, V= 1.0V, Vpc = 1250 V, and
fs = 3420 Hz. The AC system frequency and line-to-line rms voltage are wy =
377 rad/s and 480 V (i.e., Vg = 391 V), respectively. The transfer function of
the feed-forward filter is G gr(s) = 1/(8 x 10~% + 1). The PLL of Example
8.1 is used to synchronize the dg-frame to the AC system voltage.

Assuming a closed-loop time constant of 7; = 2.0 ms, based on (8.56) and
(8.57), we deduce the following d- and g-axis compensators:

0.05s + 0.815
ka(s) = ko(s) = + (2.

The system is subjected to the following sequence of events: until # = 0.15 s,
the gating pulses are blocked and the controllers are inactive. This permits the
PLL to reach its steady state. At¢t = 0.15 s, the gating pulses are unblocked and
the controllers are activated, while Pyer = Qgrer = 0. Att = 0.20 s, Pyer is
subjected to a step change from 0 to 2.5 MW. At = 0.30 s, Py, is subjected
to another step change from 2.5 to —2.5 MW. Att = 0.35 s, Q. is subjected
to a step change from 0 to 1.0 MVAr.

Figure 8.12 illustrates the time responses of the VSC system to the start-up
process and the disturbances. Figure 8.12 illustrates that Ps and Qj rapidly track
Pyyer and Qyer, respectively. Figure 8.12 also shows that the responses of Py and
Q; are decoupled when either of them is changed. Figure 8.12 also illustrates the
AC system phase-a voltage waveform, thatis, V,, and the converter phase-a cur-
rent waveform, that s, i,. Figure 8.12 shows that i, is (i) in phase with V,, when
(P, Q5) = (2.5MW, 0), (ii) 180° behind Vi, when (P, Q) = (—2.5 MW, 0),
and (iii) 158° behind Vy, when (Ps, Q5) = (—2.5 MW, 1.0 MVAr).

Figure 8.13 provides a close-up of iy and i, around ¢ = 0.20 s. Figure 8.13
verifies that the step response of iy is that of a first-order exponential function
that reaches its final value at about r = 0.21 s, that is, after about 10 ms. It should
be noted that such an inspective verification is not readily possible for ¢fS-frame
current controllers of Chapter 7. The reason is that compensators in «f-frame
are essentially of high dynamic orders, and so are the resultant closed-loop
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FIGURE 8.12 Dynamic responses of real and reactive power; Example 8.2.

systems. To design o/f-frame compensators, we adopted the frequency response
method (Bode plots) that usually does not offer a quantitative insight into the
time-response characteristics of the closed-loop system, unless the closed-loop
system is predominantly a first-order or a second-order system. Figure 8.13 also
confirms that iy and i, are well decoupled; itis observed that i, remains regulated
at zero while iy is changing from zero to 4.26 kA. Ripples on the waveforms
of iz and i, are due to the pulse-width modulation (PWM) switching side-band
harmonics of VSC AC-side currents, which are modulated by 60 Hz via the
abc- to dg-frame transformation.
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FIGURE 8.13 A close-up of responses of iy and i, about ¢ = 0.20 s; Example 8.2.
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8.4.2 Selection of DC-Bus Voltage Level

As discussed in Sections 7.3.4, 7.3.5, and 7.3.6, the DC-bus voltage of the real-
/reactive-power controller of Figure 8.3 must satisfy the following criteria:

Vpe > 2V,, PWM, (8.58)

Vpe > 1.74\7,, PWM with third-harmonic injection. (8.59)

Thus, one must properly evaluate V; under the worst-case operating condition. Since
the VSC system controls Py and Qy, \A/[ should also be expressed in terms of P
and Q. Based on (8.45) and (8.46), and under the assumptions that Vg, = 0 and
(R + ron) =~ 0, we deduce

i

Vi = L% — Laiy + Vs, (8.60)
p

Vig = L% + Laia (8.61)

Substituting for iy and i, from (8.41) and (8.42) in (8.60) and (8.61), and assuming
that Vy, is constant, we obtain

2L\ dP; 2Lawo
V., = — _— s + Vi, 8.62
td (3‘/sd) dr + (3‘/“1) Q3+ sd ( )
2L\ dQ; 2Lwyg
Vig = — P. 8.63
“ <3vsd> a < W ) ° (8.63)

Based on (4.77), the amplitude of the AC-side terminal voltage is

V= V3 + V2. (8.64)

Furthermore, the amplitude of the modulating signal is
Vi=m——. (8.65)

As discussed in Section 7.3.6, if the conventional PWM is employed, 71 can assume
a value up to unity, whereas with the PWM with third-harmonic injection, 7 can be
as large as 1.15.

To calculate the maximum of \A/t, consider the following worst-case scenario. Ini-
tially, the system is under a steady-state condition, that is, Py = Py.r = Py and
Os = Ogref = Os0- Att = 19, Pyer and Qyy.r are subjected to step changes from Py
to Pyo + APg, and Qg0 to Q0 + AQy, respectively. As discussed in Section 8.4.1,
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P and Qj; respond to step changes in their corresponding reference commands as

Py(t) = (Pyo + APy) — AP —0)/t (8.66)
05(t) = (050 + AQy) — AQge™ =0/, (8.67)

fort > to. Substituting for Ps() and Qs(¢) in (8.62) and (8.63), from (8.66) and (8.67),
we deduce

2Lwy
th = Vsd + 3 (QSO + AQS)
Vsa
2L AP
N o S _AQ, | et/ (8.68)
3V wOT;
2Lwy 2Ly AQq —(t—19)/7i
Vi = Py + APy) — APy ) ™70 (8.69
tq < 3V > (Pso + s) ( 3V > <CL)()TZ' + s|é€ ( )

Equation (8.68) indicates that at ¢t = fy, Vyy jumps from the initial value of Vy +
(23%/3’ )Qs0 to Vg + (%) Os0 + (33—‘L/M)A P; and then exponentially approaches the

final value of Vy; + (23LV“_;°)(QSO + AQy). Equation (8.69) indicates that Vi, jumps

from the initial value of (%ﬁ,‘?)ﬂo to (%ﬁ,“;’)ﬂo - (;,ﬁd)A Oy at t =ty and then
S S Vs

exponentially approaches the final value of (éLTS“;O)(Pso + A Py). The worst-case sce-

nario corresponds to t = t(J{ (immediately after t = #y) where the jumps in both P
and Q; coincide, and

Vo) — 2Lw

td(to )= Vi + ( 3V ) O + (3_’:5‘/“1) APy, (8.70)
+ 2Lwy 2L

qu(to )= ( 3V ) Fo= <3TiVsd) A0 &7

Depending on the steady-state power flow and the values of AP and A Qy, V,d(tar )
and th(to+ ) can be estimated based on (8.70) and (8.71). The maximum AC-side
terminal voltage, \A/t(ta' ), is then calculated from (8.64), based on V,d(tg' ) and V[q(tg' ).
Finally, the minimum required DC-bus voltage is calculated based on (8.58) or (8.59),
depending on the PWM strategy adopted. These calculations are demonstrated in
Example 8.3.

EXAMPLE 8.3  Selection of DC-Bus Voltage Level

Consider the real-/reactive-power controller of Example 8.2, in which Vy; =
0.391 kV, L = 100 pH, 7; = 2.0 ms, and Vpc = 1.250 kV. Assume that for
this system the worst-case scenario corresponds to Psg = 0, APy = 2.5 MW,
050 =0, and AQ; = 0. Thus, based on (8.70), (8.71), and (8.64), V,d(t(")F) =
0.604 kV, th,(taL ) =0, and \A/,(tar ) = 0.604 kV. If the conventional sinusoidal
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FIGURE 8.14 Steady-state and dynamic responses of the modulating signals to step change
in Py.r; Example 8.3.

PWM is employed, Vpc must be larger than 1.208 kV (equation (8.58)) to avoid
overmodulation. However, if the third-harmonic injected PWM is employed,
Vpc can be lowered to about 1.050 kV (equation (8.59)). For the VSC system
of Example 8.2, Vpc = 1.250 kV was selected since the conventional PWM
was employed.

Figure 8.14 illustrates the waveforms of m4, m, and m for the VSC system
of Example 8.2. Figure 8.14 illustrates that at 7y = 0.2 s, m jumps to 0.965,
corresponding to ‘A/t = 0.604 kV. Figure 8.14 also indicates that in this specific
example, the instant when the disturbance takes place coincides with the in-
stant when m(t) reaches its negative peak; this corresponds to the worst-case
scenario. However, since the DC-bus voltage is adequately large, neither 71 nor
|mp(to)| exceed unity, and the VSC does not experience overmodulation.

8.4.3 AC-Side Equivalent Circuit

Traditionally, balanced three-phase linear circuits have been analyzed based on their
corresponding phasor diagrams and single-phase equivalent circuits. In the conven-
tional phasor analysis, which is restricted to steady-state conditions, the voltages
and currents are represented by phasors, and the passive elements are represented
by impedances. This section first presents a space-phasor diagram, analogous to
the conventional phasor diagram, for the AC side of the real-/reactive-power con-
troller of Figure 8.3. Then, the relationships between the magnitude/phase-angle of
an AC-side variable and the d-/g-axis components of the variable are identified. It is
also demonstrated that, under steady-state conditions, the space-phasor differential
equations of the real-/reactive-power controller become equivalent to the algebraic
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equations derived based on the conventional phasor-domain analysis. Finally, based
on the steady-state phasor model, a simplified equivalent circuit is presented for the

real-/reactive-power controller of Figure 8.3.

8.4.3.1 Space-Phasor Diagram of the AC Side With reference to the real-
/reactive-power controller of Figure 8.3, Vupes Viape, and igpe are

V(1) = Vi cos (6)

~ 2w
Vip(t) = Vs cos (9 - ?> ,

-~ 47
Vse(t) = Vi cos (9 - ?> , (8.72)

Via(t) = Vi cos (0 + 5)

~ 21
Vip(t) = V; cos 0+3—? ,

~ 47
V,e(t) = V; cos (9 +6— ?> , (8.73)
ig(t) =icos(0— @),

ip(?) =T cos (0 —¢— 2%) )

(1) = T cos (9 e 4?”) , (8.74)

where 6 = wot + 6y, and § and —¢ are the phase shifts of V5. and ip With respect
to Viape, respectively. Vigpe, Vigpe, and igpe are equivalently expressed by the space
phasors

)

el (8.75)

= Vs

?,efﬁ) e, (8.76)

=

~{
Il
N

?e—f‘i’) el (8.77)

The space phasors \_/: and 7 are phase shifted with respect to X_/: by angles § and
—o, respectively. Under transient conditions, in addition to § and ¢, the magnitudes

- . 5 X . .
of V; and i (i.e., V; and i) can also change with time. In a steady state, however,



228 GRID-IMPOSED FREQUENCY VSC SYSTEM: CONTROL IN dg-FRAME

B

FIGURE 8.15 Space-phasor diagram for AC side of real-/reactive-power controller of
Figure 8.3.

= ~ > = —
3, ¢, Vi, and i are constant values, and Vi, V;, and i assume constant lengths and
rotate with the constant angular frequency wy.

Figure 8.15 illustrates the space phasors Vj, T/; ,and 7 onthe af-plane. Figure 8.15
also shows a dg-frame whose d-axis makes an angle p with respect to the «-axis. The d
or g component of each space phasor is the projection of the space phasor on the corre-
sponding axis. Therefore, if do/dt = wy, that is, the dg-frame rotates with the angular
speed wy, then Vygy, Vigy, and iy, settle at constant values in steady state. As discussed
earlier in this chapter, the PLL not only guarantees dp/dt = wq but also ensures that
o = 0; the latter implies that Vi, = 0 and Vg = \A/S, as perceived from Figure 8.15.

To relate the lengths and phase angles of the space phasors to their d- and g-axis
components, we use the space-phasor to dg-frame transformation of (8.1), with p = 6.
This yields

Via + jVsg = Vs, (8.78)
Vid + jVig = Vie?® = (\7, cos a) +j (\7, sin 3), (8.79)
g+ jig =i = (?cos ¢) y (—?sin ¢). (8.80)

It follows from (8.79) and (8.80) that

§=tan"" (Vy/ Vi), (8.81)
¢ =—tan"" (iy/iq). (8.82)

The angles of V; and 7 with respect to the a-axis are identified as € and ¢, respectively.
Figure 8.15 illustrates that ¢ = 8 + 6 and £ = 6 — ¢. Thus,
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e=0+tan"" (Vy/Via), (8.83)
¢=0+tan"" (iy/iq). (8.84)

Figure 8.15 also shows that y = ¢ — ¢ is the angle of V; with respect to _i), that is,
y is the power-factor angle of the three-phase circuit seen from the VSC AC-side
terminals. Based on (8.83) and (8.84), we deduce

y =tan"" (Vy/Via) —tan™" (iy/iq). (8.85)

8.4.3.2 AC-Side Steady-State Equivalent Circuit The AC-side dynamics of the
real-/reactive-power controller of Figure 8.3 are described by (8.8). If the PLL is
under a steady-state condition, then p = wot + 6p and (8.8) can be rewritten as

d . .
Vidg — Vsdg — LEldq = []LU)O +(R+ r(m)] Ldg» (8.86)

where fu; = fa + jfy and wy = dp/dt. In a steady state, the time derivative is zero
and we obtain

Vidg — Visag = [iLwo + (R +ron)] iag = Ziag. (8.87)

z
whichis identical to the conventional phasor-domain equation for an equivalent single-
phase circuit. Although (8.87) is valid under steady-state conditions, it may also be
employed for analysis and control design purposes, if a quasi-steady-state condition
is assumed. In this case, iy and i, are not constant quantities, but change relatively
slowly with time. Therefore, diy/dt and di,/dt are insignificant and can be ignored
in the analysis.

Figure 8.16(a) illustrates a time-domain equivalent circuit for the AC side of the
real-/reactive-power controller of Figure 8.3. Based on (8.86), the circuit of Figure
8.16(a) can be represented by the space-phasor-domain equivalent circuit of Figure
8.16(b). In the circuit of Figure 8.16(b), all the time-domain variables of the origi-
nal circuit are represented by the corresponding space phasors. Thus, the equivalent
circuit is valid under both dynamic and steady-state operating conditions. If a quasi-
steady-state condition is assumed, based on (8.87) the circuit of Figure 8.16(a) can
be represented by the steady-state phasor-domain circuit of Figure 8.16(c).

Substituting for VZ and _i), from (8.75) and (8.77), in (4.40), we deduce

RPN
Py = z\/sicos ¢, (8.88)

3
Qs = S Vsising. (8.89)
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FIGURE 8.16 Equivalent circuits for AC side of the real-/reactive-power controller of Figure
8.3: (a) time-domain equivalent circuit; (b) dynamic space-phasor-domain equivalent circuit;
(c) quasi-steady-state space-phasor-domain equivalent circuit.
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Equations (8.88) and (8.89) exhibit the same forms as their counterparts in the con-
ventional phasor-domain analysis. However, they are also valid for dynamic operating
regimes where Vg, i, and ¢ can all be functions of time.

8.4.4 PWM with Third-Harmonic Injection

In Section 7.3.6, we explained the need for the third-harmonic injected PWM as a
means for extending the VSC permissible voltage range. We then formulated the
third-harmonic injected PWM and presented the block diagram of Figure 7.11 for its
implementation in a-frame. Figure 8.17 shows a block diagram equivalent to that of
Figure 7.11, for the third-harmonic injected PWM in dg-frame.

As explained in Section 7.3.6, the modulating signals for the third-harmonic in-
jected PWM are constructed by mgpc, based on (7.61)—(7.63). Thus, as shown in
Figure 8.17, we obtain m . from the dg- to abc-frame transformation of m,4 and m,.
The third-harmonic injected PWM also requires m2, as indicated by (7.61)—(7.63).

Therefore, we express 7 in terms of m4 and Mg as m = /m% + m%l (Fig. 8.17).

Figure 8.18 shows a schematic diagram of a real-/reactive-power controller that
employs the third-harmonic injected PWM. The real-/reactive-power controller of

dg- to abc-frame transformer for third-harmonic injection

mq

mq

FIGURE 8.17 Block diagram of dg- to abc-frame signal transformer to generate modulating
signals for third-harmonic injected PWM.
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FIGURE 8.18 Schematic diagram of real-/reactive-power controller utilizing the third-
harmonic injected PWM.

Figure 8.18 is the same as the real-/reactive-power controller of Figure 8.3 in which
the mgy-to-mgpe block is replaced by the block diagram of Figure 8.17. The VSC
employed in the real-/reactive-power controller of Figure 8.18 can be a two-level
VSC or a three-level NPC. Figure 8.18 also illustrates that for the VSC system with
the third-harmonic injected PWM, myg_apc is limited to 41, which corresponds to
the limit of 1.15 for mgp.. Thus, using the third-harmonic injected PWM, the VSC
AC-side terminal voltage can reach up to +1.15(Vp¢/2), instead of =(Vpc/2) under
the conventional PWM.

8.5 REAL-/REACTIVE-POWER CONTROLLER BASED ON
THREE-LEVEL NPC

The real-/reactive-power controllers of Figures 8.3 and 8.18 can also utilize the three-
level NPC (Fig. 8.19) as the power processor. Based on the unified dynamic model of
Section 6.7.4 presented for the two-level VSC and the three-level NPC, the dg-frame
model and control design procedures presented in Sections 8.3 and 8.4 are equally
applicable to both the two-level VSC and the three-level NPC. However, as shown in
Figure 8.19, the three-level NPC also requires a DC-side voltage equalizing scheme,
as discussed in Section 6.7.2.
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FIGURE 8.19 Block diagram of the three-level NPC.

Figure 8.20 illustrates a control block diagram of the DC-side voltage equalizing
scheme. Figure 8.20 indicates that the control plant is an integrator whose gain is
proportional to — Py, that is, the real power that the VSC system exchanges with the
AC system. Thus, the output of the compensator K(s) is multiplied by —1 if Py is

—&

Partial DC-side voltage
dynamics

Partial DC-side voltage equalizer

4

2V sin(wr+ )

FIGURE 8.20 Control block diagram of the partial DC-side voltage equalizing scheme for
the three-level NPC.
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positive, to ensure a negative feedback irrespective of the direction of the power flow.
Py can be readily calculated using Py = (3/2)Vygiy or, assuming a fast d-axis current
controller, approximated by Py,.r. Figure 8.20 also shows that the difference between
the partial DC-side voltages is fed back through a filter, F(s). The filter is required to
attenuate the third-order harmonic component of the measured signal and prevent it
from distorting the corrective offset mg. Details of modeling, derivation of the block
diagram of Figure 8.20, and the compensator design approach for the DC-side voltage
equalizing scheme are given in Section 7.4.

8.6 CONTROLLED DC-VOLTAGE POWER PORT

Previous sections presented the model and controls of the real-/reactive-power con-
troller (Figs. 8.3 and 8.18), whose function is to control the real and reactive power
that is exchanged with the AC system. In the real-/reactive-power controller, the VSC
DC-bus voltage is impressed by an ideal, DC, voltage source, and the VSC system
acts as a bidirectional energy exchanger between the AC system and the DC voltage
source. However, in many applications, for example, photovoltaic (PV) systems and
fuel-cell systems, the VSC DC side is not interfaced with a voltage source; rather, it
is connected to a (DC) power source that needs to be interfaced and exchange (real)
power with the AC system. Thus, the DC-bus voltage is not imposed and, therefore,
needs to be regulated. This scenario is illustrated in Figure 8.21.

The VSC system of Figure 8.21 is conceptually the same as that of Figure 8.18,
except that the DC voltage source is replaced by a (variable) DC power source. The
power source typically represents a power-electronic unit (or a cluster of them) with
a prime source of energy, for example, a PV array, a variable-speed wind turbine-
generator set, a fuel-cell unit, or a gas turbine-generator set, behind it, and is considered
as a black box in our investigations. The power source is assumed to exchange a time-
varying power, Pey(t), with the VSC DC side. Thus, the VSC system of Figure 8.21
enables a bidirectional power exchange between the power source (black box) and
the AC system. We refer to the VSC system of Figure 8.21 as controlled DC-voltage
power port, which is employed as an integral part of the STATCOM, the back-to-back
HVDC converter system, and variable-speed wind-power units; these are discussed
in Chapters 11, 12, and 13, respectively.

The main control objective for the controlled DC-voltage power port is to regulate
the DC-bus voltage Vpc. As Figure 8.21 illustrates, the kernel of the controlled DC-
voltage power port is the real-/reactive-power controller of Figure 8.18 by which P
and Q; can be independently controlled. Therefore, to regulate the DC-bus voltage,
a feedback mechanism compares Vpc with its reference command and accordingly
adjusts Py, such that the net power exchanged with the DC-bus capacitor is kept
at zero. However, the reactive power O can be independently controlled. In many
applications, Qj is regulated at zero, that is, the VSC system operates at unity power
factor. Alternatively, Qs may be controlled in a closed-loop mechanism to regulate
the PCC voltage, as discussed in Chapter 11.
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FIGURE 8.21 Schematic diagram of the controlled DC-voltage power-port.

8.6.1 Model of Controlled DC-Voltage Power Port

The main control requirement of the controlled DC-voltage power port of Figure 8.21
is to regulate the DC-bus voltage, Vpc. Equivalently, as discussed in Section 7.5.1,
we choose to regulate Vlz)c rather than Vpc. Based on (7.92), dynamics of VLZ)C are

described by
dvi. 2 2 2 2LP;\ dP,
dt C ext C loss C s + 3ng dt
2 [(2L0,) do, (5.90)
C |\ 3vg ) dr | '

where V; of (7.92) is replaced by Vy,. Based on the unified dynamic model of the
two-level VSC and the three-level NPC that was presented in Section 6.7.4, (8.90)
is valid for both VSC configurations. Based on (8.90), Vlz)c is the output, P; is the
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control input, and Py, Pjyss, and Qj are the disturbance inputs. As shown in Figure
8.21, Vgc is compared with sz)cr of the error signal is processed by the compensator
K (s), and the command Py, s is issued for the real-power controller. The real-power
controller, in turn, regulates Ps at Pg.r, while Qg can be independently controlled.
Ogrer can be set to a nonzero value if an exchange of reactive power with the AC
system is required. In an AC system with a large impedance, the PCC voltage is
subject to variations as Py changes with time (i.e., due to the changes of P,y;). In this
case, the PCC voltage can be regulated by controlling Q; in a closed-loop system
that feeds the PCC voltage back and commands Q.r; this reactive-power control
strategy is discussed in Chapter 11.
To derive the transfer function G ,(s) = Ps(s)/ Pyrer(s), we note that

1q(s) = Gi()Larer(5), (8.91)

where G;(s) is given by (8.55). Assuming that Vg is constant, multiplying both sides
of (8.91) by (3/2) V4, we obtain

Py(s) = Gi(S)Psref(S)~ (8.92)

Therefore, G ,(s) = G;(s) and based on (8.55), we have

Py
(s) () =

= 8.93
Psref(s) ( )

‘L'is-l-l‘

The form of (8.93) is intuitively expected as real power in dg-frame is proportional to
ig. The control plant described by (8.90) is nonlinear due to PS% and Q d[%‘ terms.
Ihe linearized plant is provided by (7.94), which is repeated here as (8.94), in which

Vs is substituted by Vig,.
~ 2LPy \ dP
Ps + 2s0 K

2LQs0 d@s
( 3V3d ) I 1, (8.94)

where superscripts ~ and 0 represent, respectively, small-signal perturbations and
steady-state values of the variables. Applying Laplace transform to (8.94), we deduce
the transfer function G (s) = Vlz,c / P as

2
dVDC = ENext - %

d ~ C C

2

C

2N\ w41
)”+ , (8.95)

Gu(s) = f/gc(v)/ﬁs(v) = — (E

S
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where the time constant 7 is

_2LPyy 2L Pexo
RS

(8.96)

Equation (8.96) indicates that  is proportional to the (steady-state) real-power flow
Pexi0 (or Pyo). Thus, if P, is small, 7 is insignificant and the plant is predominantly
an integrator. As P, increases, T becomes larger and causes a shift in the phase of
G (). In the inverting mode of operation where P,y is positive, T is also positive
and adds to the phase of G,(s). However, in the rectifying mode of operation, that is,
where P, 1s negative, 7 is negative and results in reduction in the phase of G, (s); the
phase drops further as the absolute value of P,,;9 becomes larger. Based on (8.95),
the plant zero is given by z = —1/t. Therefore, a negative t corresponds to a zero on
the right-half plane (RHP). Consequently, the controlled DC-voltage power port is a
non-minimum-phase system in the rectifying mode of operation [72]. As discussed
in Section 8.6.3, this non-minimum-phase property has a detrimental impact on the
system stability and must be accounted for in the control design process [72].

8.6.2 Control of Controlled DC-Voltage Power Port

Figure 8.22 shows a block diagram of the DC-bus voltage controller for the controlled
DC-voltage power port of Figure 8.21. The closed-loop system is composed of the
compensator K,(s), real-power controller G ,(s), and control plant G(s), which is
described by (8.95). Figures 8.21 and 8.22 indicate that K, (s) is multiplied by —1 to
compensate for the negative sign of G,(s). The closed-loop system of Figure 8.22 is
identical to that of Figure 7.23 for which the design guidelines have been provided
in Section 7.5.2 and are, therefore, equally applicable to the closed-loop system of
Figure 8.22. As described in Section 7.5.2, K,(s) should include an integral term and
a lead transfer function. The lead transfer function compensates for the plant phase
lag and ensures an adequate phase margin at the gain crossover frequency. Based on
(8.95) and (8.96), G ,(s) has the largest phase lag when P,); is at its rated negative
value. If an adequate phase margin can be guaranteed at this operating point, the
closed-loop system remains stable for other operating points.

DC-bus voltage controller Composite control plant
___________ p———— T
I c ) : | Pov(s;er controller DC-bus voltage dynamics |
ompensator ~ lynamics ~
I .
| sref s 2\ Ts + 1 |
— Kvu(s ! » G, (s) > —(—) > -2
v ($) : ! P ) s | Vic

FIGURE 8.22 Control block diagram of DC-bus voltage controller based on the linearized
model.
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As outlined in Section 7.5.2, to design K,(s), we first select the gain crossover,
we, to be adequately smaller than the bandwidth of G ,(s), such that one can assume
Gp(joc) = 1+ jO. Then, K,(s) is designed for an adequately large phase margin
under the worst-case operating condition. The design method presented in Section
7.5.2 was based on frequency response. The reason was that based on the oS-frame
control G ,(s) typically is a high-order transfer function and primarily characterized by
its bandwidth rather than its pole/zero map. Here, however, G ,(s) (as given by (8.93))
is a first-order transfer function and the root-locus design method is also an option.
The advantage of the root-locus method is that performance indices, for example,
maximum overshoot and settling time, are related to the pole/zero loci in a more
straightforward manner and can be readily taken into account in the design process.

EXAMPLE 8.4  Design of DC-Bus Voltage Controller in dg-Frame

Consider the controlled DC-voltage power port of Figure 8.21 that employs the
three-level NPC of Figure 8.19. Parameters of the system are 2C = 19,250 wF,
L =200 pH, R =2.38m, o, =0.88mR2, Vy; =1.0V, Vpec =2500V, f; =
1680 Hz, Vsg =391V, and wp = 377 rad/s. The rated power of the VSC system
is Py = £2.5 MW, and the third-harmonic injected PWM strategy is adopted.

With reference to Figure 8.20, the controllers of the DC-side voltage equal-
izing scheme are

K(s) = 0.0007 [V~'],
_ 57+ Bay)’ s>+ 11317

F(s) = = )
® (s +3wp)? 2 +2262s + 11312

From (8.56) and (8.57), for t; = 1.0 ms parameters of the dg-frame current
controllers must be k, = 0.2 Q and k; = 3.26 /s, which correspond to

1000

oY= = 000

(8.97)

The DC-bus voltage controller is designed based on the block diagram of Figure
8.22. In Figure 8.22, G,(s) is a function of the operating point (see equations
(8.95) and (8.96)). Therefore, K, (s) is designed for the worst-case operating
point in the rectification mode, corresponding to P,,0 = —2.5 MW. Equation
(8.97) indicates that the bandwidth of G ,,(s) is 1000 rad/s. Thus, for the control
loop of Figure 8.22, we choose w, to be about one-fifth of the bandwidth of
G (s), that is, 200 rad/s, to avoid excessive phase lag in the loop.
Based on Figure 8.22, the loop gain is

Us) = —Ky(5)G p()G (), (8.98)
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where G,(s) and G ,(s) are given by (8.95) and (8.97), respectively. To ensure
zero steady-state errors, K,(s) must include an integral term. Let K, (s) be

Ky(s) = N(S)I;—O, (8.99)

where N(s) is a proper transfer function with no zero at s = 0, and ko is a
constant gain. Substituting for G,(s) and K,(s) in (8.98), respectively, from
(8.95) and (8.99), we obtain

0s) = Noko [ 2) =51 (8.100)
C) 2000Ls + 1)

If N(s) = 1, then kyp = 180 yields |£(;j200)| = 1 and

s+ 1

os)=37423——
s2(0.001s + 1)

(8.101)

We refer to (8.101) as the uncompensated loop gain.

Figure 8.23 illustrates the magnitude and phase plots of the uncompensated
loop gain, for P9 = 2.5 MW, P,y0 = 0, and P,y;0 = —2.5 MW. Figure 8.23
shows that the magnitude response of the uncompensated loop gain is similar
for all three operating points, and |£(j200)| = 1. However, Z£(j200) is —168°,
—191°, and —215°, corresponding to P, = 2.5, 0, and —2.5 MW, respec-
tively. Therefore, the closed-loop system is poorly stable for Pey0 = 2.5 MW,
and unstable for P,,;9o = 0 and P,,;0 = —2.5 MW. To ensure a stable closed-
loop system for all operating points, we correct ££(j200) by letting N(s) in
(8.100) be the lead filter

N(s) = no%l;/la), (8.102)

where p is the filter pole, o (> 1) is a real constant, and ny is the filter gain. The
maximum phase of the filter is given by

—1
8, = sin~! <Z+ 1) , (8.103)

which COI‘I‘GSpOHdS to the fI'CqUCIle
_1
f .

Thus, if a phase margin of, for example, 45° is desired for P,y = —2.5 MW,
then ZN(j200) is required to be 80°. Solving for «, p, and ng, with &, = 80°,

(8.104)

Wy =
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wpy, = 200 rad/s, and |N(j200)| = 1, we obtain

19
N(s) = 103812 (8.105)
s+ 2077

Substituting for N(s) in (8.99) and (8.100), from (8.105), we obtain

s+ 19 s+ 1
£(s) = 388455 : 8.106
*) <s+2077> <s2 (0.001s + 1)) (8.106)
S + 19 -1
Kos) = 1868—— [, 8.107
u(8) 561 2077) [©Q77] ( )

We refer to the loop gain of (8.106) as the compensated loop gain. Figure 8.23
also shows the magnitude and phase plots of the compensated loop gain, for
Poxro = 2.5, 0, and —2.5 MW. Figure 8.23 illustrates that |£(j200)| = 1 for
all three operating points. Moreover, Z£(;j200) is —89°, —112°, and —135°,
corresponding to P,y0 = 2.5, 0, and —2.5 MW, respectively. Thus, the closed-
loop system is stable for the three operating points with a phase margin ranging
from 45° to 91°.

Figure 8.24 illustrates the response of the controlled DC-voltage power port
of Figure 8.21 to the start-up process as well as stepwise changes in P,,;. The
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FIGURE 8.24 Dynamic performance of the controlled DC-voltage power port of Example
8.4 when feed-forward compensation is not in service.
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results of Figure 8.24 are obtained under the condition that the feed-forward
compensation in the DC-bus voltage control loop is disabled, and the VSC
system is subjected to the following sequence of events.

Initially, P, = 0, the VSC gating signals are blocked, and the controllers
are inactive. However, the DC-side capacitors of the VSC are charged via
antiparallel diodes of VSC switch cells, and Vpc¢ increases to about 700 V.
At t = 0.20 s, gating signals are unblocked, all controllers are activated, and
Vbcrey is changed stepwise from 700 to 2500 V. Consequently, to move Vpc
up, K,(s) commands a negative P.¢ to import real power from the AC system
to the VSC DC side; Pyy is saturated to its negative limit for a brief period.
At about t = 0.30 s, Vpc is regulated at Vpcrer = 2500 V, and Py and Py
assume small values corresponding to the VSC power loss. Figure 8.24 also
shows that P,,; changes stepwise from 0 to 2.5 MW, at ¢ = 0.35 s, which entails
an overshoot in Vpc. The compensator reacts to this disturbance and increases
Pgrer (and thus Py increases) to bring Vpc back to 2500 V. Att = 0.50 s, Pey
changes stepwise from 2.5 to —2.5 MW. Consequently, Vpc undergoes an
undershoot until the compensator reacts and reduces Pg.r. It should be noted
that the pattern of the undershoot at t = 0.50 s is different from that of the
overshoot at ¢ = 0.35 s. The reason is that, as Figure 8.23 illustrates, the phase
margin (and frequency response) is considerably different for these two op-
erating points. Therefore, the system response to disturbances is also different
for the two operating points. Att = 0.65 s, Q.r assumes a step change from 0
to 1.0 MVAr. This disturbance, however, has no significant impact on Vpc, as
Figure 8.24 illustrates. The reason is that, based on (8.90), the contribution of
O, to dV3-/dt is weighted by the term 2L /(3V?)), which typically is a small
value.

Figure 8.25 illustrates the response of the controlled DC-voltage power port
of Figure 8.21 to the same disturbances as described above, but with the feed-
forward compensation of the DC-bus voltage control loop enabled (i.e., a mea-
sure of P,y is added to the output of K, (s), Fig. 8.21). A comparison between
Figures 8.25 and 8.24 indicates that deviations of Vpc from Vpcyer are consid-
erably smaller when the feed-forward compensation is employed. The reason
is that any change in Pey; is rapidly communicated to Py, and the balance of
power is quickly regained.

8.6.3 Simplified and Accurate Models

The DC-bus voltage dynamics, described by (8.90), are nonlinear; the nonlinearity is
due to the presence of the instantaneous power of VSC interface reactors. Thus, in
the linearized model of (8.95), the time constant t is a function of the operating point.
Based on (8.96), T is negative in the rectifying mode of operation and results in exces-
sive phase lag in the loop gain. This phase lag can lead to unsatisfactory performance
or even instabilities if it is not taken into account in the compensator design.

In the technical literature, the instantaneous power of the interface reactors is often
ignored [73-76], that is, it is assumed that L ~ 0 and P; = Py. We refer to this model
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FIGURE 8.25 Dynamic performance of the controlled DC-voltage power port of Example
8.4 when feed-forward compensation is enabled.

as the simplified model, which can then be derived from (8.95) by substituting for
T =0.

s 2\ 1
Go(s) = V3o(s)/ Py(s) = — (E) ~. (8.108)

The transfer function (8.108) indicates that the simplified model corresponds to the
accurate model of (8.95) for the zero real-power operating point, that is, P,x0 =
0. However, as demonstrated in Example 8.4, the zero real-power operating point
does not correspond to the worst-case scenario in terms of the compensator design,
since the loop gain phase continues to drop in the rectifying mode of operation.
Consequently, compensator design based on the simplified model of (8.108) may
result in poor performance or even instabilities [72]. This is further highlighted in
Example 8.5.

EXAMPLE 8.5 Instability in Rectifying Mode of Operation

Consider the controlled DC-voltage power port of Example 8.4 for which G ,(s)
is given by (8.97). Assume that we have to design a PI compensator, for the
closed-loop system of Figure 8.22, based on the simplified model of (8.108).
Thus, the loop gain includes a double integrator and a negative real pole (i.e.,
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FIGURE8.26 Instability of the DC-bus voltage controller in the rectifying mode of operation;
Example 8.5.

the pole of G,(s)); the compensator design process requires to identify the
zero and the gain of the PI compensator. For a loop gain that possesses two
integrators (including that of the PI compensator) and one first-order lag, the
method of symmetrical optimum can be effectively employed to determine the
compensator zero [43]. Based on the symmetrical optimum method, one obtains
the following compensator that yields a phase margin of 45° and a crossover
frequency of w, = 415 rad/s:

s+ 172

K,(s) = 1.996 Q. (8.109)

Since the simplified model of (8.108) does not exhibit any dependence on
the operating point, one would expect that the closed-loop system remains
stable over the entire power range. This is, however, not the case. Figure 8.26
illustrates that while the closed-loop system is stable for P,y = 2.5 MW, it
becomes oscillatory and unstable when P,,; drops from 2.5 to about —2.1 MW.
The reason is that the actual control plant, described by (8.95) rather than
(8.108), exhibits a non-minimum-phase zero when P,,; becomes negative. For
this example, two of the three closed-loop poles lie on the RHP when P,
becomes smaller than about —2.1 MW. These two poles are s = 4.42 & j535
rad/s and correspond to the observed unstable oscillatory response.



